8 research outputs found

    Dielectric Elastomer Cooperative Microactuator Systems : DECMAS

    Get PDF
    This paper presents results of the first phase of “Dielectric Elastomer Cooperative Microactuator Systems” (DECMAS), a project within the German Research Foundation Priority Program 2206, “Cooperative Multistable Multistage Microactuator Systems” (KOMMMA). The goal is the development of a soft cooperative microactuator system combining high flexibility with largestroke/high-frequency actuation and self-sensing capabilities. The softness is due to a completely polymer-based approach using dielectric elastomer membrane structures and a specific silicone bias system designed to achieve large strokes. The approach thus avoids fluidic or pneumatic components, enabling, e.g., future smart textile applications with cooperative sensing, haptics, and even acoustic features. The paper introduces design concepts and a first soft, single-actuator demonstrator along with experimental characterization, before expanding it to a 3 × 1 system. This system is used to experimentally study coupling effects, supported by finite element and lumped parameter simulations, which represent the basis for future cooperative control methods. Finally, the paper also introduces a new methodology to fabricate metal-based electrodes of sub-micrometer thickness with high membrane-straining capability and extremely low resistance. These electrodes will enable further miniaturization towards future microscale applications

    Finite element modeling and validation of a soft array of spatially coupled dielectric elastomer transducers

    Get PDF
    Dielectric elastomer (DE) transducers are suitable candidates for the development of compliant mechatronic devices, such as wearable smart skins and soft robots. If many independently-controllable DEs are closely arranged in an array-like configuration, sharing a common elastomer membrane, novel types of cooperative and soft actuator/sensor systems can be obtained. The common elastic substrate, however, introduces strong electro-mechanical coupling effects among neighboring DEs, which highly influence the overall membrane system actuation and sensing characteristics. To effectively design soft cooperative systems based on DEs, these effects need to be systematically understood and modeled first. As a first step towards the development of soft cooperative DE systems, in this paper we present a finite element simulation approach for a 1-by-3 silicone array of DE units. After defining the system constitutive equations and the numerical assumptions, an extensive experimental campaign is conducted to calibrate and validate the model. The simulation results accurately predict the changes in force (actuation behavior) and capacitance (sensing behavior) of the different elements of the array, when their neighbors are subjected to different electro-mechanical loads. Quantitatively, the model reproduces the force and capacitance responses with an average fit higher than 93% and 92%, respectively. Finally, the validated model is used to perform parameter studies, aimed at highlighting how the array performance depends on a relevant set of design parameters, i.e. DE-DE spacing, DE-outer structure spacing, membrane pre-stretch, array scale, and electrode shape. The obtained results will provide important guidelines for the future design of cooperative actuator/sensor systems based on DE transducers

    Fully Polymeric Domes as High-Stroke Biasing System for Soft Dielectric Elastomer Actuators

    Get PDF
    The availability of compliant actuators is essential for the development of soft robotic systems. Dielectric elastomers (DEs) represent a class of smart actuators which has gained a significant popularity in soft robotics, due to their unique mix of large deformation (>100%), lightweight, fast response, and low cost. A DE consists of a thin elastomer membrane coated with flexible electrodes on both sides. When a high voltage is applied to the electrodes, the membrane undergoes a controllable mechanical deformation. In order to produce a significant actuation stroke, a DE membrane must be coupled with a mechanical biasing system. Commonly used spring-like bias elements, however, are generally made of rigid materials such as steel, and thus they do not meet the compliance requirements of soft robotic applications. To overcome this issue, in this paper we propose a novel type of compliant mechanism as biasing elements for DE actuators, namely a threedimensional polymeric dome. When properly designed, such types of mechanisms exhibit a region of negative stiffness in their force-displacement behavior. This feature, in combination with the intrinsic softness of the polymeric material, ensures large actuation strokes as well as compliance compatibility with soft robots. After presenting the novel biasing concept, the overall soft actuator design, manufacturing, and assembly are discussed. Finally, experimental characterization is conducted, and the suitability for soft robotic applications is assessed

    Fully Polymeric Domes as High-Stroke Biasing System for Soft Dielectric Elastomer Actuators

    Get PDF
    The availability of compliant actuators is essential for the development of soft robotic systems. Dielectric elastomers (DEs) represent a class of smart actuators which has gained a significant popularity in soft robotics, due to their unique mix of large deformation (>100%), lightweight, fast response, and low cost. A DE consists of a thin elastomer membrane coated with flexible electrodes on both sides. When a high voltage is applied to the electrodes, the membrane undergoes a controllable mechanical deformation. In order to produce a significant actuation stroke, a DE membrane must be coupled with a mechanical biasing system. Commonly used spring-like bias elements, however, are generally made of rigid materials such as steel, and thus they do not meet the compliance requirements of soft robotic applications. To overcome this issue, in this paper we propose a novel type of compliant mechanism as biasing elements for DE actuators, namely a three-dimensional polymeric dome. When properly designed, such types of mechanisms exhibit a region of negative stiffness in their force-displacement behavior. This feature, in combination with the intrinsic softness of the polymeric material, ensures large actuation strokes as well as compliance compatibility with soft robots. After presenting the novel biasing concept, the overall soft actuator design, manufacturing, and assembly are discussed. Finally, experimental characterization is conducted, and the suitability for soft robotic applications is assessed

    Model-Based Design Optimization of Soft Polymeric Domes Used as Nonlinear Biasing Systems for Dielectric Elastomer Actuators

    Get PDF
    Due to their unique combination of features such as large deformation, high compliance, lightweight, energy efficiency, and scalability, dielectric elastomer (DE) transducers appear as highly promising for many application fields, such as soft robotics, wearables, as well as micro electromechanical systems (MEMS). To generate a stroke, a membrane DE actuator (DEA) must be coupled with a mechanical biasing system. It is well known that nonlinear elements, such as negative-rate biasing springs (NBS), permit a remarkable increase in the DEA stroke in comparison to standard linear springs. Common types of NBS, however, are generally manufactured with rigid components (e.g., steel beams, permanent magnets), thus they appear as unsuitable for the development of compliant actuators for soft robots and wearables. At the same time, rigid NBSs are hard to miniaturize and integrate in DE-based MEMS devices. This work presents a novel type of soft DEA system, in which a large stroke is obtained by using a fully polymeric dome as the NBS element. More specifically, in this paper we propose a model-based design procedure for high-performance DEAs, in which the stroke is maximized by properly optimizing the geometry of the biasing dome. First, a finite element model of the biasing system is introduced, describing how the geometric parameters of the dome affect its mechanical response. After conducting experimental calibration and validation, the model is used to develop a numerical design algorithm which finds the optimal dome geometry for a given DE membrane characteristics. Based on the optimized dome design, a soft DEA prototype is finally assembled and experimentally tested

    Modeling and Design Optimization of a Rotational Soft Robotic System Driven by Double Cone Dielectric Elastomer Actuators

    Get PDF
    Dielectric elastomers (DEs) consist of highly compliant electrostatic transducers which can be operated as actuators, by converting an applied high voltage into motion, and as sensors, since capacitive changes can be related to displacement information. Due to large achievable deformation (on the order of 100%) and high flexibility, DEs appear as highly suitable for the design of soft robotic systems. An important requirement for robotic systems is the possibility of generating a multi degree-of-freedom (MDOF) actuation. By means of DE technology, a controllable motion along several directions can be made possible by combining different membrane actuators in protagonist-antagonist configurations, as well as by designing electrode patterns which allow independent activation of different sections of a single membrane. However, despite several concepts of DE soft robots have been presented in the recent literature, up to date there is still a lack of systematic studies targeted at optimizing the design of the system. To properly understand how different parameters influence the complex motion of DE soft robots, this paper presents an experimental study on how geometry scaling affects the performance of a specific MDOF actuator configuration. The system under investigation consists of two cone DE membranes rigidly connected along the outer diameter, and pre-compressed out-of-plane against each other via a rigid spacer. The electrodes of both membranes are partitioned in four sections that can be activated separately, thus allowing the desired MDOF actuation feature. Different prototypes are assembled and tested to study the influence of the inner radius as well as the length of the rigid spacer on the achievable motion range. For the first experimental study presented here, we focus our analysis on a single actuation variable, i.e., the rotation of the rigid spacer about a fixed axis. A physics-based model is then developed and validated based on the collected experimental measurements. A model-based investigation is subsequently performed, with the aim of studying the influence of the regarded parameters on the rotation angle. Finally, based on the results of the performed study, a model-based optimization of the prototype geometry is performed

    Dielectric Elastomer Cooperative Microactuator Systems—DECMAS

    No full text
    This paper presents results of the first phase of “Dielectric Elastomer Cooperative Microactuator Systems” (DECMAS), a project within the German Research Foundation Priority Program 2206, “Cooperative Multistable Multistage Microactuator Systems” (KOMMMA). The goal is the development of a soft cooperative microactuator system combining high flexibility with large-stroke/high-frequency actuation and self-sensing capabilities. The softness is due to a completely polymer-based approach using dielectric elastomer membrane structures and a specific silicone bias system designed to achieve large strokes. The approach thus avoids fluidic or pneumatic compo-nents, enabling, e.g., future smart textile applications with cooperative sensing, haptics, and even acoustic features. The paper introduces design concepts and a first soft, single-actuator demonstrator along with experimental characterization, before expanding it to a 3 × 1 system. This system is used to experimentally study coupling effects, supported by finite element and lumped parameter simulations, which represent the basis for future cooperative control methods. Finally, the paper also introduces a new methodology to fabricate metal-based electrodes of sub-micrometer thickness with high membrane-straining capability and extremely low resistance. These electrodes will enable further miniaturization towards future microscale applications

    Assembly and Characterization of a DE Actuator Based on Polymeric Domes as Biasing Element

    No full text
    Dielectric elastomer (DE) technology opens up the possibility of constructing novel lightweight and energy-efficient mechatonic systems, whose design can be tailored to several applications. Numerous types of DE actuator (DEA) configurations, capable of high-force, high-speed, and high-stroke, have been presented in the recent literature. One relevant example is represented by membrane DEAs. This type of actuator consists of a DE film pre-loaded with a mechanical bias. In case the biasing element shows a negative slope (i.e., stiffness) in its force-displacement characteristic, the stroke of the resulting DEA can be significantly magnified. Conventional negative-stiffness biasing systems are based on pre-compressed metal beams, thus they appear as unsuitable for miniaturization to the meso- or micro-scale, as well as for the design of completely flexible actuators for wearable and soft robotics applications. To overcome those issues, a new, novel, full polymer-based DEA configuration is introduced in this work. The core element is the biasing system, which is based on a compliant silicone dome. This type of bias presents a negative stiffness region within its mechanical characteristic; thus, it can serve as a flexible alternative to metal-based biasing systems. It will be shown how the force-displacement characteristic of the dome can be geometrically tuned to match the ones of the DE. In this way, a large actuation stroke can be achieved with a full polymer-based design. After discussing system design and manufacturing, the actuator element is assembled. Finally, experimental stroke characterization is performed
    corecore